Equilibria, Energetics and Elements <u>How Far?</u>

1.	(a)	rate of forward reaction = rate of reverse reaction (1) concentrations of reactants and products are constant but they are constantly interchanging (1)			
	(b)	(i)	$K_{\rm c} = [\rm CH_3 OH] / [\rm CO] [\rm H_2]^2$ (1)	1	
		(ii)	use of $K_c = [CH_3OH] / [CO] [H_2]^2$ and moles to obtain a calculated value (1)		
			convert moles to concentration by +2: $[CO] = 3.10 \times 10^{-3} \text{ mol dm}^{-3}$; $[H_2] = 2.60 \times 10^{-5} \text{ mol dm}^{-3}$; $[CH_3OH] = 2.40 \times 10^{-2} \text{ mol dm}^{-3}$ (1)		
			$K_{\rm c} = [2.60 \times 10^{-5}] / [3.10 \times 10^{-3}] [2.40 \times 10^{-2}]^2 = 14.6 / 14.56$ (1)		
			If moles not converted to concentration, calculated K_c value = 3.64 (scores 1st and 3rd marks)	4	
			units: dm° mol ⁻² (1)	4	
	(c)	(i)	fewer moles of gas on right hand side (1)	1	
		(ii)	None (1)	1	
	(d)	(i)	moved to left hand side/reactants increase/less products (1)	1	
		(ii)	ΔH negative because high temperature favours the endothermic direction (1)	1	
	(e)	(i)	$CH_3OH + 1\frac{1}{2}O_2 \rightarrow CO_2 + 2H_2O(1)$	1	
		(ii)	adds oxygen/oxygenated (1)	1	[13]

2. (a)
$$K_{c} = \frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}$$
 (1)

(b) (i)
$$PCl_5 > 0.3 \text{ mol } dm^{-3}$$
; PCl_3 and $Cl_2 < 0.3 \text{ mol } dm^{-3}$ (1) 1
(ii) At start, system is out of equilibrium with too much PCl_3
and Cl_2 and not enough $PCL_5 / \frac{0.3 \times 0.3}{0.3} = 0.3$ is greater than $K_c = 0.245 \text{ mol } dm^{-3}$ (1) 1

- (c) (i) K_c does not change as temperature is the same (1) 1
 - (ii) Fewer moles on left hand side (1)

1

		system moves to the left to compensate for increase in pressure by producing less molecules (1)	2
	(d)	(i) K_c decreases (as more reactants than products)(1)	1
		(ii) Forward reaction is exothermic/ reverse reaction is endothermic (1) equilibrium \rightarrow left to oppose increase in energy/ because K_c decreases (1)	2 [9
3.	(a)	$\begin{array}{l} \mathrm{CH}_4 + \mathrm{H}_2\mathrm{O} \rightarrow 3\mathrm{H}_2 + \mathrm{CO} \\ \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O} \rightarrow 4\mathrm{H}_2 + \mathrm{CO}_2 \\ \mathrm{CH}_4 + \mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{H}_2 + \mathrm{CH}_2\mathrm{O}/\mathrm{HCHO} \\ \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O} \rightarrow 2\mathrm{H}_2 + \mathrm{CH}_2\mathrm{O}_2/\mathrm{HCOOH} \checkmark \\ \mathrm{or} \ \mathrm{CH}_4 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}_2 + \mathrm{CH}_3\mathrm{OH} \checkmark \end{array}$	1
	(b)	(i) $k_c = \frac{[NH_3]^2}{[N_2][H_2]^3} \checkmark$ $[NH_3]^2 = (K_c \times [N_2] \times [H_2]^3) \checkmark$ $= 0.768 \checkmark$	1
		(ii) $[NH_3] = \sqrt{0.78} = 0.876/0.88 \pmod{\text{dm}^{-3}}$ If no powers, then rearrangement mark only.	3
	(c)	 High pressure: adv: Fewer moles on r.h.s. → equilibrium moves to right ✓ Greater pressure → faster rate/more frequent collisions ✓ dis: Safety issues from (high) pressure Expense of (high) pressure ✓ 	3
		High temperature:	
		 auv: more consistons exceed activation energy/ more successful collisions/more energetic collisions/molecules have more energy ✓ dis: Equilibrium moves to left/reverse direction because (forward) reaction is exothermic ✓ 	2

		Catalyst: lowers activation energy/ allows reaction to take place at a lower temperature ✓	1	
		QWC: Uses 2 words following list in the correct context: exothermic/endothermic, activation energy, collisions, equilibrium/Le Chatelier	1	[12]
4.	(a)	$K_{\rm c} = \frac{[{\rm HI}]^2}{[{\rm H}_2][{\rm I}_2]}$ (1)	1	
	(b)	(i) H_2 I_2 HI 0.30 0.20 0 0.14 0.04 0.32 (1) (1)	2	
		(ii) $K_{c} = \frac{0.32^{2}}{0.14 \times 0.04} = 18.28571429$ (1) = 18 (to 2 sig figs) (1) no units (1) (or ecf based on answers to (i) and/or (a))	3	
	(c)	$K_{\rm c}$ is constant (1) Composition of mixture is the same (1)	2	[8]
5.	(a)	(change in) concentration/mass/volume with time	1	
	(b)	 (i) O₂: Exp 2 has 4 × [O₂] as Exp. 1: rate increases by 4 (1), so order = 1 with respect to O₂ (1) 		
		NO: Exp 3 has $3 \times [NO]$ as Exp. 3: rate has increases by 9 (1), so order = 2 with respect to NO (1)	4	
		(ii) rate = $k[O_2] [NO]^2$ (1)	1	

(iii)
$$k = \frac{\text{rate}}{[O_2][NO]^2} = \frac{7.10}{0.0010 \times 0.0010^2} = 7.10 \times 10^9$$
 (1)
units: dm⁶ mol⁻² s⁻¹ (1) 2

(a)	$K_{p} = \frac{p(SO_{3})^{2}}{p(SO_{2})^{2} \times p(O_{2})}$ (1)(1) 1 mark for correct powers but wrong way up. 1 mark for square brackets	2	
(b)	An increase in pressure moves equilibrium to the right because there are less gaseous moles on the right hand side (1) Increased pressures are expensive to generate/safety problems with walls of containers/enables gases to flow (1)		
	K_p gets less with increasing temperature (1) SO ₂ and O ₂ increase/SO ₃ decreases (1)		
	Equilibrium \rightarrow left to oppose increase in temperature (1) Forward reaction is exothermic or ΔH is -ve /reverse		
	reaction is endothermic or ΔH is +ve because K_p gets less with increasing temperature (1)	6	
	QoWC: organises relevant information clearly and coherently, using specialist vocabulary where appropriate (1)	1	
(c)	$3.0 \times 10^{2} = \frac{p(SO_{3})^{2}}{10^{2} \times 50}$ (1) $p(SO_{3}) = \sqrt{(3.0 \times 10^{2} \times 10^{2} \times 50)} = 1225 \text{ kPa (1)}$		
	$\%(SO_3) = 100 \times 1225 / (1225 + 10 + 50) = 95\%$ (1)	3	
(d)	(i) $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ (1)(1) ZnS, O ₂ as reactants and SO ₂ as a product: 1st mark.		
	ZnO and balance: 2 nd mark	2	
	(ii) ZnS is more available than S. (1)	1	[15]

(a) (i)
$$O_3: 1$$

and C_2H_4 (1)
(ii) 2 (1)
(iii) rate = k[O_3] [C_2H_4] (1)

7.

6.

1

1

1

[8]

at t = 0/start of reaction (1)

(ii)
$$k = \frac{\text{rate}}{[O_2][C_2H_4]}$$
 (1)
 $k = \frac{1.0 \times 10^{-12}}{0.5 \times 10^{-7} \times 1.0 \times 10^{-8}} = 2 \times 10^3$ (1) dm³ mol⁻¹ s⁻¹ (1) 3

2

8.	(i)	each atom has two unpaired electrons (1)	1	
	(ii)	2 oxygen atoms bonded by double bond (1) third oxygen bonded by a covalent bond and outer shells correct (1) For 2^{nd} mark, all O atoms must have an octet.		
		A triangular molecule would have 3 single covalent bonds for 1 st mark but the origin of each electron must be clear for 2 nd mark	2	
	(iii)	amount of O ₃ in 150 kg = $150 \times 10^3/48 = 3.13 \times 10^3$ mol (1) amount of Cl radicals in 1 g = $1/35.5 = 2.82 \times 10^{-2}$ mol (1) 1 mol Cl destroys $3.13 \times 10^3/2.82 \times 10^{-2} = 1.11 \times 10^5$ mol O ₃		
		1 Cl radical destroys 1.11×10^5 O ₃ molecules (1)		
		(calculator: 110937)	3	[6]
9.	(a)	High Pressure Equilibrium \rightarrow right as fewer moles on right hand side and the shift reduces number of molecules/compensates for increasing pressure (1) Rate increases/ more collisions (1)	2	
		High temperature Equilibrium \rightarrow left as equilibrium goes to the left to compensate for increased temperature/absorbs the energy/in endothermic direction (ora) (1) Rate increases/ more successful collisions (1)	2	
		Other effect		
		High pressures expensive/ high temperatures expensive /high pressures cause safety problems (1)	1	
		QWC: One correct statement followed by correct explanation (1)	1	

(b)	(i)	CO	H_2	CH ₃ OH			
		1.0	2.0	0.0			
		0.9	1.8 (1)	0.1 (1)			
		0.9/2.8 or 0.321 c	or 0.32/0.3	1.8/2.8 or 0.643	or		
		0.64/0.6	0.1/2.8 or 0.036	or 0.04	(1)		
		3.21 (MPa)	6.43 (MPa)	0.36 (MPa)	(1)		
		In 3 rd and 4 th row		4			
	(ii)	$K_{p} = \frac{p(CH_{3}O)}{p(CO) \times p(I)}$ 1 mark for K_{c} / us		2			
	(iii)	$K_{\rm p}$ stays the same Equilibrium posit in response to inc $K_{\rm p} = \frac{0.261}{3.70 \times 5.10^{21}}$	(1)	3			
	(iv)	calc value 2.7120	546×10^{-3} ; answe	r and/or units ecf fr	rom (ii)	2	
(c)	CH ₃	$OH + 1.5O_2 \rightarrow CO_2$	₂ + 2H ₂ O (1)			1	[18]